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What is a key?

> Goal: Alice sends a secret message to Bob.

> Solution:
Step 1: Alice and Bob share a private key.
Step 2: Encrypt/decrypt a message with the key.
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Overview

The Problem

» Classical key distribution can be broken by quantum
computers.

» Quantum key distribution (QKD) is always secure.

The Big Picture

» KRP (Key Relay Protocol) is a mathematical model for QKD
» KRP is recent and unexplored

» KRP ~ SNC (Secure Network Coding), which is well-known

> How secure is KRP?

4/48



Background
000000

Outline

© Background

5/48



Background

0@0000

Quantum Communication

Theoretical vs. Practical

Quantum communication (QKD) is theoretically unbreakable.
However, it faces physical and practical challenges.
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Quantum Communication

Theoretical vs. Practical

Quantum communication (QKD) is theoretically unbreakable.
However, it faces physical and practical challenges.

Key Issues
> QKD suffers from high error rates beyond 50-100 km

> Optical amplifiers collapse quantum states — unlike classical
signals.

> Long-distance transmission is only feasible with quantum
networks.
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Networking

Network
A graph G= (V,E) where:

> Nodes = users

> Edges = communication links

» U={(aj, bi)} is the set of user pairs wishing to communicate

e/o\l_
/ \
‘E’ // N //‘E.\\
\0
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Adversary Model

Types of Adversaries

> Eavesdroppers
Can intercept transmissions, but does not alter them.
We call this a passive adversary
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Adversary Model

Types of Adversaries

> Eavesdroppers
Can intercept transmissions, but does not alter them.
We call this a passive adversary

Wiretap Model

> A wiretap set is a subset of communication links (edges) that
an eavesdropper can observe.

» Let £={E,Ey,..., Ex} denote the wiretap collection,
where each E; is a wiretap set.

> The network is secure if the eavesdropper gains no
information by wiretapping any E; € £.
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Information Theory

Information Theory: is a branch of statistics used to quantify the
amount of randomness in a certain event given some some
information has been gained.

Entropy

H(X) = =" Px(x) log Px(x)

> Measures the uncertainty or randomness in a variable X, in
bits.

> Entropy quantifies how many bits of information are needed
to describe a secret key.
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Information Theory

I(X: Y) = H(X) - H(XY)

> Quantifies how much knowing Y reduces uncertainty about
X; zero mutual information implies information-theoretic
secrecy.

» Security Criterion: We require /(Key; &) =0, hence, reveal
nothing about the Key.
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Edge Primitive Definitions

Public Channels

Broadcast unencrypted information to all nodes. Unlimited use.
Eavesdroppers can fully read the content.

Secret Channels

Encrypted, one-time use private links between two nodes. If
wiretapped, the eavesdropper also receives the message.

Local Key Sources

Distributes randomly generated bit(s) to both ends. LKS are
implemented via QKD links
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Secure Network Coding

Given a communication network G = (V, E), user pairs (a;, b;) wish
to share secure messages over a directed and untrusted network.
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Secure Network Coding

Given a communication network G = (V, E), user pairs (a;, b;) wish
to share secure messages over a directed and untrusted network.

Methodology

> Any node can generate random bits. These bits can be
forwarded through the network using secret channels.

> Any node can compute linear combinations of known
information to improve throughput
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Secure Network Coding

. @ -O @ -
» ' Tra

samples k=r; can perform calculations on receives k=r
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Key Relay Protocol

Not this type of “Key Relay” ®
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Key Relay Protocol

Given a communication network G = (V, E), user pairs (a;, b;)
wish to share secure keys over an undirected and untrusted
network.
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Key Relay Protocol

Goal

Given a communication network G = (V, E), user pairs (a;, b;)
wish to share secure keys over an undirected and untrusted
network.

Methodology

» Local Key Sources (LKS) generate identical, random bits
to both endpoints using QKD.

> Use public channels to publish the linear combination of
random bits generated by LKS.
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Key Relay Protocol

n rn rn 2
. @~ -O- -@ -
y 2 L
chooses k=n announces p=ry + ry reconstructs k= p+mn=r
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Equivalence of Protocols

Security Notions

» User Pairs share identical keys or detect a failure.

> Protocol A is said to be more secure than Protocol B , if A is
secure against more wiretap sets & for any (G, U): B c A
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Equivalence of Protocols

Security Notions

» User Pairs share identical keys or detect a failure.

> Protocol A is said to be more secure than Protocol B , if A is
secure against more wiretap sets & for any (G, U): B c A

Protocols Equivalence

> B c A: any level of security attained by B can also be attained
by A. If Ac B and B ¢ A, then A 2 B and the two protocols
are said to be equivalent, achieving the same level of security.
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SNC vs KRP

Prior Results by G. Kato and T. Tsurumaru

Proved results:
» SNC ¢ KRP, but not vice versa.

> Counterexample Network: KRP supports multiple pairs;
SNC fails even in absence of eavesdroppers.

> O-user pairs: KRP is able to share keys and SNC fails
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Where do we start?

_-=" T KRP7
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> Approaches

O Nonequivalence
@ Equivalence
© Study KRP on its own

» Many possible graphs and parameters
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Existing Counterexample

Iy

> (G,U,&) e KRP
> (G,U,E) ¢ SNC
P E=p

(G, U,¢)

KRP
°

&>

(For 9+ user pairs)
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Conjecture for One User Pair

We couldn’t prove or
disprove this @
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Linear Algebra Formulation

Can we use mathematical terms to describe the
KRP design problem?
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Linear Algebra Formulation

Can we use mathematical terms to describe the
KRP design problem?

Yes, we only need to track which pieces of
randomness are applied (in 7 )

Incidence Vector

Vector of length |E| that has a 1 in index i if ¢; is applied
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Linear Algebra Formulation (Incidence)
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Linear Algebra Formulation (Incidence)
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Linear Algebra Formulation (Incidence)

[1,0,0,0,0,0] [0,0,1,0,0,0] [0,0,0,0,1,0]

% 7
N N €3 , /
e]_ 65
dl bl
€
€2 6\
7
, €4 ~

» 1 ~
[0,1,0,0,0,0] [0,0,0,1,0,0] [0,0,0,0,0,1]

6
Zz = Span{ely €2, €3, €4, €5, 66}

25 /48



Introduction 3a ound ’rotocols Results

0O0000@0000000000

Linear Algebra Formulation (Incidence)

[1,0,0,0,0,0] [0,0,1,0,0,0] [0,0,0,0,1,0]
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» ¥
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Zgzspan{e1,627635e47e5,eﬁ}

k=e; +e:=[1,1,0,0,0,0]

25 /48



Results

000000800000 0000

Linear Algebra Formulation (Public Channels)

[e1,€2,€3,€1,65,65]

e +€e3= [1,0,1,0,0,0
.
6'1 e5
a1 bl
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€4
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Linear Algebra Formulation (Public Channels)

[e1,€2,€3,€1,65,65]

€ +e3= [17071707070]\ [0,0,1,0,1,0]
\\ e3 ,”V
€1 €5
a1 bl
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Vs ~
[0,1,0,1,0,0] [0,0,0,1,1,0]
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Linear Algebra Formulation (Public Channels)

[e1,e2,€3,64,65,€6]

€ te3= [17071707070]\ [0,0,1,0,1,0]
\\ es ,”V
€1 (S
a1 bl
e €
-~ €4 S~
Vs ~
[0,1,0,1,0,0] [0,0,0,1,1,0]

[1,0,1,0,0,0]",[0,1,0,1,0,0]"

[0,0,1,0,1,0]",[0,0,0,1,1,0]"
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Linear Algebra Formulation (Node Reconstruction)
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Linear Algebra Formulation (Node Reconstruction)

N, = span{[e|nj e e]uP}

€3
di b 1
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Linear Algebra Formulation (Eavesdropper Secrecy)

Ag, = span{e3, e u P}
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€
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Linear Algebra Formulation (Eavesdropper Secrecy)

Ag, = span{e3, ey U P}

el/O ........ es
ai by
QNGO &6

[1,0,1,0,0,0] +[0,1,0,1,0,0]

_ _ from P
k=[1.1.0.0.01= 1 01.0,0,0]+[0,0,0,1,0,0] | < A& X

€3 €4
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Linear Algebra Formulation

Soundness requires key k satisfies
vk € N, = span{[ve|n; € ] UP} for n; € (a;, b;)
Security requires key k satisfies

vk ¢ Ag, = span{[ve|e € E,JuP}
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Linear Algebra Formulation

Soundness requires key k satisfies
vk € N, = span{[ve|n; € ] UP} for n; € (a;, b;)
Security requires key k satisfies

vk ¢ Ag, = span{[ve|e € E,JuP}

LELGEIVEY
Choice and timing of P defines a KRP instance
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Linear Algebra Applications

Why is this useful?
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Linear Algebra Applications

Why is this useful?

Security

Analysis of adversary knowledge
Akrp = span{[ve|ei € E,] U P} Asnc = span{[se|ei € En]}

Which choices of P are useful?

30/48



Results
0000000000080000

Minimum Cut Result

Theorem Min-Cut Feasibility

A necessary but not sufficient condition for KRP with n user
pairs and a min cut separating the user pairs of size mis that n < m
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Minimum Cut Result

KRP requires that
@ Privacy of the keys: I(K;P) =0
@ Independence of the keys: H(K) =n
@ Constructibility of the keys: H(K|L, P) =0
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Minimum Cut Result

KRP requires that
@ Privacy of the keys: I(K;P) =0
@ Independence of the keys: H(K) =n
@ Constructibility of the keys: H(K|L, P) =0

Constructibility Remark

The "defining” information about the keys is entirely dependent
on the random bits on the cut.
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Minimum Cut Result

H(K)

HUEP)  + [(PY +I(K; LIP)

—_—
n via independence  via constructibility via privacy
=I(K; L|P)
< H(L|P)

= H(L)
=m

Takeaway

The minimum unwiretapped cut, equivalently, number of
edge-disjoint paths, needs to at least match the number of secret
keys shared.
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Minimum Cut Conjecture

Theorem KRP Soundness

If there is an edge disjoint path between each unique user pair,
successful communication is possible.
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Minimum Cut Conjecture

If there are no edge disjoint paths between unique user pair, there
is possibly a tighter minimum cut bound that restricts the number
of edge disjoint paths between the vertex sets.

35/48



Applications
©0000000000

Outline

O Applications

36/48



Applications

0®@000000000

Tree Graphs
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|

KRP is sound on tree graphs (2] ‘/
iff there are edge disjoint

paths connecting each pair.
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Tree Graphs

Theorem

KRP is sound on tree graphs (2] ‘/
iff there are edge disjoint

paths connecting each pair.

?
?

Corollary | | I
KRP = SNC on tree graphs. o— — — 0— —

(> X
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Tree Graphs Proof

Every node pair in a tree has a unique path

» If two user pairs’ path overlaps, m<n
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Introduction

Tree Graphs Proof

Every node pair in a tree has a unique path
» If two user pairs’ path overlaps, m<n

» If they do not, each pair only has one possible
communication pattern. KRP and SNC both
admit the same capabilities

38/48
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Graph Simplification

Theorem

Contracting a leaf edge does /0\ I

not change the security of
SNC or KRP. /

Theorem
Contracting a node with two /9\ ~
neighbors does not change

the security of SNC or KRP.

_—
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Graph Simplification

Theorem

Contracting a leaf edge does

not change the security of

SNC or KRP. \
Theorem \ :
Contracting a node with two (2

neighbors does not change
the security of SNC or KRP.
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Cycle Graphs

KRP is sound on cycle graphs
iff user pairs are adjacent.
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Cycle Graphs

KRP is sound on cycle graphs
iff user pairs are adjacent.

Corollary

KRP = SNC on cycle graphs.

e
i
/
?/0\
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Pseudotree Graphs

Theorem 0 ~ /o\

KRP is sound on pseudotree }\ /
graphs iff there are edge - \9
disjoint paths connecting each

pair.
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Pseudotree Graphs

o JAN

KRP is sound on pseudotree

graphs iff there are edge RN
disjoint paths connecting each 2 \/
pair.

Corollary
KRP = SNC on pseudotree \

graphs. 0— ~ /9\
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Complete Graphs

Definition

A graph in which there is an
edge between any two vertices
is called a complete graph. A
complete graph with n
vertices is denoted by Kj,
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Complete Graphs

On a complete graph with a
single user pair, KRP and
KRP-by-SNC are equivalent.

Note: Since any tree can be embedded in a complete graph, and
depending on the wiretap sets, this result implies a general
equivalence for KRP and SNC in the 1-user-pair setting
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Input Parameters

» Graph G=(V,E)
» User pairs {(a;, b;) }
» Wiretap sets &
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Input Parameters

» Graph G=(V,E)
» User pairs {(a;, b;) }
» Wiretap sets &

Step 1: Graph Validation

» Check if G is connected

> Verify min-cut bound
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KRP: Algorithm Overview

Input Parameters
» Graph G=(V,E)
» User pairs {(a;, b;) }
> Wiretap sets £

Step 1: Graph Validation

» Check if G is connected

> Verify min-cut bound

Step 2: Local Key Distribution

> Each edge generates a random key re
> Keys are distributed to incident nodes

> Nodes announce Public values

44/48
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KRP: Graph Verification Overview

Step 3: Security Checks

> Ensure key + public announcements are linearly independent

> Failure implies potential leakage = Insecure protocol

45/48



Introduction d ’ro e Applications

00000000080

KRP: Graph Verification Overview

Step 3: Security Checks

> Ensure key + public announcements are linearly independent

> Failure implies potential leakage = Insecure protocol

Step 4: Key Delivery Verification

> Verify that each (a;, b;) can compute their shared key K;
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KRP: Graph Verification Overview

Step 3: Security Checks

> Ensure key + public announcements are linearly independent

> Failure implies potential leakage = Insecure protocol

Step 4: Key Delivery Verification

> Verify that each (a;, b;) can compute their shared key K;

Step 5: Visualization

> Plot the graph with:
> User pairs highlighted
> Wiretap sets shown
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Incomplete and Future Work

» Feasibility Algorithm (NP or P)?
» Multi-Cycle graphs?
» Planarity Effect?
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